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ABSTRACT: Approximate integrals of the spherical blast

equations with variable isentroplc exponents are derived.

The distributions of velocity, density and pressure within

the sphere of disturbance are expressed in polynomials.

These are used to calculate the "reduced energy" which is

closely related to the relationship between shockwave peak

pressure and distance. For very large distances, the well

known asymptotic behavior of weak shockwaves is obtained.
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A THEORY OF THE SHOCKWAVE

PRODUCED BY A POINT EXPLOSION

CHAPTER I INTRODUCTION

The theoretical treatment of shockwaves caused by con-

ventional explosions is complicated by the presence of two
media: the reaction products of the explosive and the ambient

medium into which the shock is transmitted. Assumption of an

infinitely small "explosive charge" which delivers a finite

energy removes the difficulty of the two-medium problem and

permits study of the shockwave propagation through a homogene-
ous medium. Such an analysis is applicable to atomic ex-

plosions or to electric discharges of high energy in small
spark gaps.

Several attempts have been made to attack this problem

[a] .[e]*; the best known is Sir Geoffrey Taylor's now classi-
i cal treatise "The Formation of a Blast Wave by a Very Intense

Explosion" [a]. Recently Lockwood Taylor [b] has shown that

- the solution of Taylor's differential equations can be given

in closed form. These theories apply to very high shock pres-

sures only, i.e., to the initial phase of the blast.

The present paper describes an approach 14o the general
problem '-ich also holds for lower pressures. Particular con-

sideration was given to underwater explosions. Since the
thermodynamic data for water cannot be expressed in simple

equations, once a large pressure range is considered, the cal-
culations were set up for the use of tabulated thermodynamic
data. The methods of calculation which were developed can be

handled with ordinary desk computing machines.

*Such letters refer to the list of references at the end of

this report.

1
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CHAPTER II THE TRANSFORYMATION OF THE

HYDRODYNAMIC DIFFERENTIAL EQUATIONS

2.1 The Hydrodynamic Equations. Even for strong energy dis-

charges, radiation effects are unimportant under water, because

the mean free paths of photons and electrons are small in media

of high density. Also, it is well known that viscosity and

heat conduction do not affect the fluid motion we are consider-

ing here except at shock fronts. There, these effects are im-

plicitly accounted for by the Rankine-Hugoniot shock relations.

Thus, for ,egimes behind shock fronts the energy Is transmitted
by pressure forces only and each particle has constant entropy

as long as it is not traversed by a further shock. This situ--

ation is described by the well-known hydrodynamic equations.

For the case of spherical symmetry, these are:
(2.1) ." p,, ,.. ,• •, 0-,:

(2.2) t 0 r-

(2.3) 5t - .

Introducing the isentropic exponent

(2.4)

(2.2) and (2.3) can be combined as follows:

The symbols are defined in the table at the end of this
paper. It should be noted that , designates the excess pressure

above the statio pressure P . This convention affectsor which

is here defined somewhat differently from the common isentropic

exponent,( . The latter is related to / as follows:

2
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(2.5)/

At high pressures, there is no difference between these two
magnitudes but for4o 0 v*, whereas O- remains finite.
2.2 The Rankine-Hugoniot Conditions. For a shook advancing
into an undisturbed medium, the following conditions must be

observed:

(2.6) ,A.,,,

(2.7) I or, _ ,

(2,8),-

(The subscript I designates the state Just behind the shock
front; zero refers to the undisturbed state).
2.3 Thermodynamic Data. Equation (2.8) must be evaluated using
the thermodynamic data of the fluid considered. The evaluation
is simplified by the introduction of the "reduced internal

energy"

(2.9) J'- Jf, A 3)

which will also be used in other connections in this paper.
J is a dimensionless magnitude related to the heat capacity.

(For an ideal gas at high temperature and pressure, 7 - Cv/R
where cv is the heat capacity at constant volume and R is

the gas constant). The relation between J and is:

(2.-,0)-- +,

3
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This relation holds gen,.rally for any type of fluid. For

constant heat capacity, the last term vanishes and one obtains

a relation which is widely used in the literature.

Once J(P,,O) is known, one can readily determine the shock

pressure 1, as a function of the density ,, and the magni-

tude

'2,4a)

This is analogous to the isentropic exponent (2.4) except that

the differential quotient is taken along the Rankine-Hugoniot

adiabatic instead of the isentropic. According to the Rankine-

Hugoniot conditions, '/nch vanishes for infinitely high

pressures whereas Y remains finite.

2.4 Change from Free Boundary Conditions to Fixed Boundary

Conditions

Equations (2.1) to (2.3) constitute a free bou:idary problem

since the boundary conditions must be fulfilled along an un-

known line, - namely, the radius-time curve of the sphere

bounded by the shock front. The hydrodynamic equations will

now be transformed in such a way that three partial differential

equations are obtained whose boundary conditions must be ful-

filled at a fixed and known place. This Is possible by adding

one more equation, namely a relationship for the position of

the shock front.

The transformation is readily performed by the introduction

of the following reduced variables:

(2.11) Reduced velocity: ?0=

(2,12) Reduced density: X 04-

A
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(2.13) Reduced pressure: -

(2.14) Reduced distance: - r

All magnitudes with the subscript 1 refer to the shock front
and are functions of time only; in particular, we note that
4,,/4E. U .

With the use of these variables and the Rankine-Hugoniot

relations (2.6) and (2.7), the hydrodynamic equations take the
form:

+ 4
(2.15) td4

(2,16) Of "'

tWi

We introduce the abbreviations:

(2.18) ' u£ &!4

(2.19) L __

(2.20) C ,8 = <-O --. - ,
,.", ., -

Since fmr is known as a function of )o , only , remains
to be determined. (This will be done In the next chapter).

5
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Using Go,, we can eliminate the time t from the partial

differential equations and obtain equations with j and , as

independent variables, where /, takes the place of *

(2.21) ; N- I # 7 ,(%

(2.22)

P to

(2.23) - *

. = _ ---- -,•x

2.5 Boundary Conditions. The traneformation of the partial

differential equations has simplified the boundary conditions.

These are:

(2.?4) / - , .m I,

At the center of the sphere, 0 - 0, the velocity must vanish.

Hence,

(2.25) 0 for 0.

Using (2.1), it can be deduced that

(2.26) -o for 0-o

if ) and are finite or zero at =0.

The partial differential equations (2.21) through (2.23)

have some unique properties when combined with the boundary

6
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conditions (2.24). The derivatives with respect to /0, vanish
at - 1. This means that the derivatives of 5c, ' and jpP with

respect to at I 1 are functions of 41 and H, only,
provided the thermodynamic properties of the medium, expressed
by d and • , are given. This also holds for the higher
derivatives. The consequences of this behavior will be dis-

cussed in the next chapter after th relation for Af, has been

found.

CHAPTER III GROSS PROPERTIES OF

THE SPHERE OF DISTURBANCE

The shockwave which is emitted from the point explosion is

spherically symmetric. We call the region which is enclosed by

the shock front the "sphere of-disturbance".

3.1 Average Density Relation. If we neglect the presence of
the device which discharges the energy, the medium inside the
sphere of disturbance is the same as that outside the sphere.
Since the ambient medium remains undisturbed until the shock

front arrives, the average density within the sphere must be

that of the undisturbed medium, or

(3.1)

This relation is consistent with the hydrodynamic equation for
the conservation of mass. It makes a simple statement about

the behavior of ' . Similar relations for 40 and JP do not

exist,

3.2 The Energy Integral. In order to derive an expression for

H, . we consider the total energy of the sphere bounded by the
shock front. As this sphere expands, its energy in excess of
that of the undisturbed medium must remadrn constant and equal

to the total energy Q of the initial discharge.

7
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The total energy increment of the sphere is

(3.2) Yr r

0 0

where the first term is the sum of the kinetic and internal

energies inside the sphere and the last term is the total

energy of the undisturbed fluid contained in a sphere of equal

size,

Introducing the dimensionless variables . . , • and the

magoitude J , (2.9), we obtain

Z E__ 31o

00

The last term vanishes due to (3.1). The first integral in

abbreviated, using (2.6), by

(3*1)- .:.-, * J"JJJ .
0

This magnitude represents the reduced energy of the sphere of

disturbance. The total energy is

(3.5) -

Equation (3.5) provides a convenient relationship between the

shock pressure and the distance r, for any given energy yield

Q . Hence, the primary task is to find 7, as a function of

8
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Setting 0 0, we obtain after rearrangement

(3.6)

3,P

wheore A

- .

(3.6) together with (3.,) gives the desired relationship be-

tween ;i, and •,. The solution of our problem must satisfy

the three partial differential equations (2.21) through (2.23)

as well as the integro-differential equations (3.6) and (3.4).

It is now possible to see the significance of the trans-

- formation (2.15) to (2.17). We assume that f and e are

known. As shown in the previous chapter, the first and

higher derivatives off* % andk with respect to • , at

- 1, functions of,� and A only. If J*, I and " were

analytic functions, they could be expanded around 1 i, in

series. Introducing these into the integral for p (3.4),

and using (3.6), we obtain an ordinary, first order differ-

ential e 4uation for P, . Thus, our transformation and the

expansion around I- 1 reduces our problem to one ordinary

differential equation, Once ?(,A) , oraov1), is known, the
problem is solved.

In this paper we will not discuss whether or not this

type of solution is possible. For practical calculations,

expansions of this kind are usually very inconvenient If a

large number of terms is involved. However, there remains

the highly significant point that the behavior of our three

reduced variables near! - 1 gives the greatest contribution

9
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to •, , (due to the factor I which occurs under the integral)

and that this behavior can be calculated without solving the

partial differential equations.

Closely related to P, is a magnitude of great practical
interest in any shockwave problem, namely, the inclination of

the pressure-distance curve in a logarithmic A - r plot:

(3.7) 14 4-' W7 - -.

This shows that for IIX = O, the peak pressure is inversely

proportional to the third power of the distance. This holds

for very high pressures. For large distances ý and low
pressures, the wave assumes a nearly acoustic behavior and

4%-p*,dAc approaches unity, as will be shown in Chapter VII.
For a finite A. and negative A , the pressure may decrease

even more rapidly than with the cube of the distance.

3.3 The Dissipated Energy. At the shock front mechanical
energy is constartly dissipated and converted into irreversi-
ble energy. According to the second law of thermodynamics,

the increase of dissipated energy is

(3.8) lPr, 4e

T S) Is the lowest permanent temperature which can occur in

tb'e system, For liquids, this temperature corresponds closely
to that which the fluid attains after passage of the shock-

wave and return to zero excess pressure.

The integral in (3.8) is commonly called the dissipated

enthalpy increment h . If the isentropic p-p relationship is

known, h can be conveniently determined from the difference

of the enthalpy increments at the shock front, &H, and that

10
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of an isentropic expansion to zero excess pressure:

(3*9) 41 4 -

This relation shows that h is a shock parameter like U or

M,, and, therefore, is a function of/, only. Behind shock

fronts, h is constant along any isentropic line.

The amount of dissipated energy which is wiithin the sphere

of disturbance can be found by integrating (3.8) along the

shock front. Introducing • defined by

(3.10) 0•$ Wr, 3AP. * .

the following expression is found:

(3.11) =. '/ -I,•, .. (Ap)1*- j

This and (3.7) establish a relationship between and 7,
Either one of these equations can be used to determine b•.

It is convenient to use f for high values of R, , whereas,

(3.11) will be used for the case where / approaches /,D . i.e.

for very low shock wave pressures.

CHAPTER IV THREE IMPLICIT INTEGRALS

In this chapter we will derive implicit integrals of the

three partial differential equations (2.21) through (2.23).

These integrals contain derivatives with respect to 0, and

are therefore not complete solutions of our problem. But they

give the initial distribution of our solution and provide an
understanding of the behavior of the general solution.

11
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Further, they can be used for iterations to improve approximate

solutions.
4.1 Integral Obtained From Energy Considerations. Consider a

sphere lying concentrically within the sphere of disturbance.

The inner sphere does the

work- r t .)

on the surrounding medium while it expands. It contains the
rl

energy 4-7r f f9 L J'ie

In these relations, e' denotes the radius of the inner sphere.

According to the assumption made in paragraph 2.1, the change

of energy of the sphere is equal to the rate of mechanical

work done on the surrounding medium:

(4.la) - r r

0

or, since ,w•,o•. '

(l&.lb) .p E )j/d r + 'Pei

In (4 .1b) LF has been replaced by E-Lr since, by virtue of

(2.2)
f- /,-QE

The partial derivative in the integral of (4.lb) refers to

constant r . If we change to the variable i, we must note that

(2L

12
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Introduction of the reduced variab es yields

(*.2)

/3 - 7 *J 4

Introducing further

0

and making use of (2.19), (2.20) and (3.6), we obtain:

first term of (4.2) r,~%~£fa4.AA'"

,+ G, +

GPUIA±2,, - ]

Rearrangement of (4.2) and (4.4) gives finally

(4.5) _k - . /
X ?2

In this equation the prime is omitted on ?, since it now repre-

sents the independent variable.

4.. Integral for the Reduced Velocity. By combination of (2.21)

and (2.23) we obtain

L..)* G, •, - wJ.

13
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From (i. 5 ),

(4o7eL. -PeJ

where we have used the following abbreviations:

(4'8) 'e ( tj,

A -Pa

Furthermore, we abbreviate

(4.9)H -, A[= L +Co•

G "= G,+ r'O •

(4.6) then takes the torm:

(i~~~.iO)~~ (+) /0" L-p~p~(mu~

Integration gives:

(41) .r (f , ,W - +_M (F f. #

'~x0)' J +.,~ + (~+1L &M~ (-)

If the coefticients of in (4.11) are constants, the integral
* can be expressed in closed form:

3.
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Wei K S, + AZ Z

( * -12) ,

where

(4.13) -f

and where 6,, • are the roots of the quadratic equation in the
denominator of the integrand.

4.3 An Integral Involving the Reduced Density and Pressure.
From the differential equations (2.22) and (2.23) one obtains,
using the abbreviation (4.9),

,~~~~~ R-6)" -"X

Integration yields

I; /

It is interesting to note that both integrals remain finite for
all values of• from zero to unity.

For =P• = 0 and constantr the expressions (4.5), (4.12)
and (4.15) correspond to the Lockwood Taylor solutions of the
strong point blast wave [b].

15

i

~i

. i



1• - • L" -i il Bi ,---.- , I i- -

NAVORD Report 4182

CHAPTER V

THE TAYLOR CASE

5.1 The Initial Distribution of the General Solution. G. I.
Taylor has described a special case which applies to the early
phase where the shock pressure is very high [a]. Corresponding

solutions of the hydrodynamic equations are called "progressive
waves" by Courant and Friedrlchs(f]. The essential feature of
this solution is that the velocity, pressure and density distri-

butions inside the sphere do not 6hange shape as the shockwave
advances; only the scale changes. In our coordinates, this
means that the 9-y, X-)(- and Vo-y-curves remain the same; they do
not change with time nor with p which replaces time in our

analysis.
A glance at equat'.ons (2.21) to (2.23) shows imediately

that this can be true only if i is constant. Constancy of
is also required in Taylor's treatment and is Justified for high
pressures where, according to the Rankine-Hugoniot conditions,

P. becomes independent of/o, i.e., 0 - 0. This reduces the
partial differential equations to ordinary differential e-
quations.

Since //i' " 0 for infinitely high pressure, the Taylor

solution provides the initial distribution from which the
general solution of the partial differential equations develops.
Thus, we assume that we have Taylor distributions from the very
beginning and thtt these remain stationary as long as does
not change.

(Actual explosions do not have such distributions from the
very beginning. However, it is safe to assume that the distri-
butions ef pressure, velocity and density will quickly converge
to the Taylor distributions or the subsequent distributions
calculated on the basis of an initial Taylor solution.)

16
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5.2 The ,Talor Solution. For a true point explosion both the

pressure and the temperature are Infinitely high initially,
whereas the density is finite. Under such circumstances the

medium will be completely ionized, i.e., all the atoms of the
medium will be completely stripped of their orbital electrons.

Even at relatively high densities such a medium behaves like an
ideal monatomic gas. Effects not present in the ideal gas theo-
ry are those associated with the electrostatic forces between

atoms and the radiation pressure. We neglect both of these in
this analysis. ThenS' is constant throughout the sphere and
equal to 5/3, the value for an ideal monatomic gas. Further-
more, we have the following well known relations which hold for
ideal gases with constant heat capacities:

'-I-

a -/

With - 5/3, we have p. -4Lo. This is the highest value of
,O which can occur in our problem. For the Taylor case, we

have

0

(5.2) &

r 0

p- 0

The integral (4.5) becomes:

17
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The equation for the reduced velocity is also simplified since

t The coefficients ofo in (4.11) are constants, With

(5.4)

we obtain from (4.13),

(5 .5)KI

S~~~P, + Z~PO ,/

I' The roots of the quadratic are

(5.6) 4-

i , J.l "* -A-..o

If we examine (2.23) at - O, we find, since vanishes,

We will frequently deal with this magnitide and use the

abbreviation

(5.8) CO

* The equation for the reduced velocity then becomes:

18



NAVORD Report 41i82

-~~~ -4 C.

(5.9) . -

Finally, we obtain, from (4.15), the simple expression

(5.10) X ( ~f

Combination of (5.3) and (5.10) permits the computation of
San d k , o n c e JPf / h a s b e e n f o u n d f r o m ( 5 .9 ) . A l l th r e e

functions are equal to unity fory - 1. ? and) vanish at
I w 0, whereas,# remains finite. It is of interest to study
the behavior of these three functions at' 0O.

From (5.9), it can be deduced that

*(5,11)C

where 2.

• )--7- -'o

(5.12) C, (C C4 /~
Hence, we see that, for 0 in the Taylor case, the behavior
of is 2

(5.13) C, .*

or, for/ - 5/3,

(5,13a) J y , le2• -

19
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Combining (5.3) and (5.10), we obtain for the reduced pressure

(5.14) 0 /'P!T5  /u c~~
-~~ t_.c.

This shows that * is finite. (V =0.3060 for F * 5/3).

Putt6.ng (5.13) in-co (2.23), we obtain for small values of :

(5.15) - Ao A 4-....

where

-LC/-
(5.16) 41

Hence, fort - 5/3, we have near "-0,

*(5,17) 1'- , J06....

For the reduced density, we obtain directly from (4.15):

(5.,18) -

with 4

5.3 The Primakov %ase. For 9- 7, the Taylor solution takes

on an interesting form, first found by Primakov (g]. In thib
14case,1, :. ,0. and C-1. C, , A, A, and .vanish. The

solution f (2.21) to (2.23) is

(5.20) P Ar

20
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Of course, this solution fulfills the average density con-

dition (3.1). The Primakov ease is often mentioned in con-
nection with point explosions under water, because an
isentropio pressure-density relationship using the exponent 7
gives a good representation of the behavior of water. This,
however, holds for moderately high pressures only. This is

evident if we consider the highest density, which is 1.333/O.
in the Primakov case but 4&4, for a completely dissociated and

ionized medium.

CHAPTER VI METHOD OF

ATTACK FOR THE GENERAL CASE

6.1 The Determination of M,. In order to perform calculations
using the transformed differential equations (2.21) to (2.23),
it is necessary that H, be known as a function ofp, 0

The proposed method assumes, as an initial step, several
arbitrary values for , or, uchas 1,00 -10 -2.

Then A•, L, and G, can be computed as functions of/, , since
* 4,(p,) is known. Next, 5 ,' and P must be determined from

the partial differential equations by one of the methods
described below. Subsequently 7, is calculated using (3.4).
When 7, is plotted versus[P,-- A)/, in logarithmic scale, thy
inclination of the derived , curve must coincide with the
value of/3 which was used to calculate this particular curve.
Such a curve is readily drawn in the same way as is the
graphical solution of differential equations by the method of
isoclines. Figure I illustrates the procedure. Usually, the

first step gives satisfactory accuracy. The procedure can be

repeated assuming more closely spaced values of 3 , until the
desired accuracy is obtained.

This method is practical only if 0 can be determined from
computations which are not too cumbersome. This is a formi-
dable task, if exact solutions are desired, especially for

2
21
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variable V and 3. However, it is possible to devise approxi-

mations which simplify the computations considerably without

too great loss of accuracy.

6.2 Differential Quotients fort - 1. The reduced functions

JO pX and p have the value one sty a 1. Hence, the deri-
vations with respect to O vanish in (2.21) to (2.23), and we

obtain the following simple relations:

(6.1) #

(6.2) . - ,. - ( + / + G) ,

(6-3) , ;

The second derivatives are:

(6.4)

4

+ ,' 4'-) ..

(6-5) Z =f' 4-.f4 - ,d

(6,6)
+dr f•#' ÷6,,•" 4,+G + ( 2÷ •).

22
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These and the higher order derivatives are completely determined

as functions of A a once * or4 and the thermodynamic data of

the medium are given. The case,a,4/(/--A)must be excluded.

This situation is approached forp/.A-&, and is discussed later

in Chapter VII.
6.3 The Behavior Near the Center of the Disturbance. The

Taylor solution shows that the density is zero at the center

of the explosion but the pressure is finite. If we consider

(2.9a) for the center (A4= 0), we have

(6.7 '-#

For a constantS,-h, this becomes the familiar isentropic

(6 .8) 1 - C o

/

The isentropic constants, C and C , are Infinitely large at the

center. This is a consequence of the assumption of a point

explosion, where at the beginning the pressure and temperature

are infinitely high; it holds not only for the Taylor solution
but also for the subsequent stages. Therefore, the density
remains zero and the temperature infinitely high at the center

as long as the basic assumptions of our calculations, In par-
ticular the absence of radiative energy transport, are valid.

These are clearly not fulfilled at the center since high
temperature and low density necessarily mean strong radiation.

For underwater explosions, this Inconsistency with the physic~i

picture is restricted to the almost empty spaces adjoining the

center. At some distance from the center, radiation effects
will become small because of the increased density. Actually,

the hot center will cool down very rapidly due to radiation,

equalizing the temperature In the core. This temperature may

be too low for appreciable radiation to the surrounding medium,
but still high enough to cause dissociation. This may Indicate

23
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that our basic equations are acceptable approximations and that

- 5/3. This is the same value as for the initial distri-
bution; thus, near the center j is constant with , or with

time.

From (4.15) it can be conclude4 that

(6.9) 4 A' W,

with

(6.10)
Inserting (6.9) into the partial differential equations (2.21)
to (2.23) one finds that the same expansions as in the Taylor
case, (5.13) and (5.15), satisfy these equations near - 0,

namely

(6.11~) if CO C74C

(6.12) x 2 4

(6.13) A, * A

This expansion breaks down if A* becomes zero as illustrated
by the Primakov case. Therefore, it is of interest to examine
the conditions for which A, may vanish. We set

* (6.4) 4 7

Then, according to (4.15)

* ~(6.15) B~
Putting this ,nto (2.21),
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yIi

shows that for I. < 2, A,- 0 can only occur if we permit a

singularity in Pat the center. This may occur when standing

waves within the sphere are reflected at the center but can be

excluded for any other condition. Thus the expansions (6.11)

to (6.13) hold fort.< 2.

The coef ficientsA 8,C in (6.11) to (6.14) are functions I

of A and are determined by ordinary first order differential

equations. The first four of these are:

(6.17) 3.r.C0 ÷JP , a

(6.i8) (m),h&_ .) - c.] - G, - 6,c A-&, 4_ 0

(6.20) . "'# A, + .,

These are four equations in five unknowns, namely4,A,, 8.,
4, C, . Adding one more differential equation always brings

in one more unknown. Hence, this expansion around 0 - 0 remains

undetermined, as it was in the Taylor case. An additional ex-

pression which relates the expansion around f - 0 with the

complete solutions, is required.
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Several such expressions can be set up. The most con-
venient one, equation (6.25), will be discussed in the next
paragraph. Another interesting relationship can be found by
combination of (6.17) and (6.19) and by integration from the

initial density ýa, to4 :

(6.21) Ap.)

This integral requires the knowledge of P, and, therefore, is

less convenient to use than equation (6.25).
6Ak Polynomials for the Reduced Velocity. Density and

Pressure. Since the behavior of the solutions near Y- 1 and
Y- 0 is known, one may construct approximate distributions
forff, X andik by merging these solutions in the intermediate

range. One of the simplest ways to do this is to use poly-
nomials in . , with exponents In terms of N, which satisfy
the partial differential equation near -a 0. The coefficients

are determined in such a way that the polynomials satisfy the
boundary conditions and have, up to a certain order, the correct
behavior near I- 1andr -0.

If only first order terms are used, we have four-term
polynomials for • and and a three-term polynomial for %P

2

(6.22) -=j C i

/-0

(6.23) X2

(6.24 
A

j2O
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There are eleven coefficients to be determined for which we

have the following conditions:

(a) Three boundary conditions at 1 1

-, r (6.1)
(b) Three differential quotients at (6.2)

(c) The average density condition (3.1)
(d) Three ordinary differential equations involving A. , . ,

Ce. ,.,: (6.17), (6.19), (6.20)

(e) One expression which relates the expansion around - 0

to the entire solution, preferably a condition for A*.
The last condition (e) can be found from (2.21). Solving

for yielde

(6.25) -,4)6.-p- - ,, L,_p X -,-)Pf,

The integration from ' - 0 tol - I can be readily performed
with the use of the polynomials (6.22) to (6.24).

With

(6.26) #.j

we obtain

30- Ao C, (- C2(3 +2A 8, - -

(6.27) + 3CeV #3/ +(9..ai -( r*)(P a -2A) 'axil
(6.27)

+ e/.~6 21..,e 5-~5 Co S4Cz)IL14
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(6.27) is an ordinary differential equation for Cc as a function

of P, . Therefore, we have three simultaneous ordinary differ-
ential equations for

Aq ---- (6.17)

B. ---- (6.19)
c. - - - - (6.27)

and one algebraic equation for A,, namely the combination of

(6.20) and (6.27). The rest of the coefficients are then

determined by

(6.28) Az 3-3A. 2Ah

(6.29) Al -- A. -As -Al

. (6.30) B1  - -. S. S 6 - 73721 4 X;

(6.31) *&IL .,

(6.32) , -,.6 , 0. 06/ ÷.,

(6.33) - .-5

(6.34) C" /- CO - C,

The accuracy of these polynomials was tested for the Taylor

case where the exact solution is known. The result was very

encouraging; for instance, P was given accurately by the

approximation (6.27) up to the fourth decimal place. This does

not necessarily mean that this approximation will be equally

good for the general case, but it shows that this treatment

gives a first order approximation which can later be improved

by iteration.
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6.5 Iteration for Improving the Approximate 5Rolutions. The

transformation of the hydrodynamic equations (2.21) to (2.23)

gives the solution in a form which is relatively insensitive

to one of the independent variables, namelyp, . This suggests

the use of the implicit integrals (4.8), (4.11) and (4.15) for

iterations. Once good approximations for ?,, and ) are known,

these approximations can be improved by calculating approximate

J() and f(7) for (4.8) and$,? ,and Hfor (4.10) and (4.11).

Solving these for P, y and f would yield improved approximations.
J. F. Butler, NOL, has derived other integrals which can

be used for iterations and which need onlyX for the initial

approximate solution. These may be useful because the average

density conditions together with the derivatives 4/ ,

lead to good approximations ofA without much numerical effort.

Solving (2.22) for P and integrating from 1- I to . gives

+/
(6.35) .L y t L'$-} (2 -

The reduced pressure can be obtained from (2.21)

Numerical integration of this equation yields Cp). Using

the results obtained for 5 and V,, (2.23) can be used to

improve 5 by integrating the following relation:

* =- f, [,z *•~',I- L[,*
(6.37) -!LZ0,
From here on (4.5) and (6.36) can be used to improve the

functions I and)( further.
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CHAPTiR VII THE LOW PRESSURE RANGE

When A/IP approaches unity it becomes more and more

difficult to evaluate the integral V because %T, increases
rapidly with decreasing o, and y . For values of P,/)0 close

to unity, it is possible to derive an asymptotic relationship

which is useful In solving the problem In the range of low

pressures. The first step in doing this is to obtain simple

expressions for the thermodynamic data of water which permit a

representation of the equation for *7, in closed form.

7.1 Thermodynamic Data for Water at Low Pressures. For low

amplitudes, the Hugoniot adiabatic coincides with the isen-
tropic; therefore,

(7.1)1

If the sound velocity changes linearily with pressure,

(7.2) C CO 0 i/ +E•

the following relations can be derived:

(7-3)ee. -___

(7.4) 6)- 6$

(7.5) pp .r ,
pc

Strictly speaking, E refers to the change of the sound ve-
locity with pressure along an isentropic. For low pressures,

however, it is permissible to use values of 6 which are

obtained by measuring sound velocities as functions of pressure

at constant temperature, namely 6 - 0.108. This holds for

30
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sea water as well as f'resh water at all temperatures of
interest. For low pressures (7.3) to (7.5) yield the follow-

I,

ing firot-order approximations :

A-oA

(7.7),"""'

where -

2 for fresh water at 200 C
I 2.376 fo,• sea water at 80 C

and QL / ,

Using these approximations, we obtain from (3.9) for the
dissipated enthalpy increment a

(7.8) , p-

7.2 Behavior of the Shockwave Peak Pressure. As the sphere of
disturbance increases in size the shockwave peak pressure
decreases and the wave finally behaves nearly like an acoustic
wave. It is well known that weak shockwaves never attain an
exactly acoustic behavior as far as the pressure decay with
distance is concerned i.e., the pressure does not exactly
decrease inversely proportional to distance. For instance,
Kirlkwood and Dethe have found the asymptotic behavior of weak
shockwaves to be as follows

( 7 -9 ) 1, _1 C

- reference length, , - constant

This gives
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/
(7.10) t4Alf = - /

Our expression for , (3.7) becomes with (7.6),

(7.11) , * , ,

S_ f, 3 . !; J ..
where

comparison of these two equations shows that, for low pressures,
B must slowly (logarithmically) approach unity. This means

that 1, tends to zero, when ,A approacheso0..
7.3 Expressions for Vo. A/ and Ye at Low Pressures. Using

(7.6) and (7.7), we obtain the following limiting equations for

A, and L,

(7 .1 2 ) 
PS.p o , p, o v ei-++j

P-0

= •t/3 .2+ "

(T7.13) Xkv L -'X / - -,.-•.

Introduction of these expressions Into the equation for 5t
yields
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/+ ,i,+ ./ f
JA,'/ -. ... .

(7.z4)z
= -•

Correspondingly, we obtain for •/

(7.15) ,
.92/

f-. X)+ +--
+ Z

= (12 + 2 is- ..-7.. The S E IE* 1

- P,". ÷•÷3 ..

for' the derivative of the reduced density, we find

(7'.16) p,.•/°- ' -•/ . ÷ J ,

7.1& The Sho~ckwave Energy and its Relation to the Total Elnergy.

When the shockweve has propagated to large distances, the
energy distribution within the sphere of disturbance may be
visualized as follows: The core of the sphere is still very
hot. Although pressure and density are low, the region near
the center has a substantial amount of internal energy. In
the case of underwater explosions this energy is associated
with the pulsations of the bubble. Near the surface of the

33
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sphere, i.e., near the shock front, one finds the kinetic and
potential energy of the shockwave as well as an Increment
of internal energy which stems from the energy dissipation

at the shocktront. Thus, we may distinguish three energy terms:
bubble energy, shockwave energy and dissipated energy. In the
following, we deal with the shockwave energy.

The potential energy (reversible Internal energy) of the

shockwave is

(7.17) V7r -- r ~r* ~~1Z~dr

where

(7.18) 
fFt

YO

For low pressures,

SI~-"

(7.19) TV

If we introduce this expression into the Integral (7.18) sevEýT"

terms cancel because of the average density relation (3.").

The terms left are
/

0

(7.20)

0 #
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where (7.3) has been used.

Defining a reduced shockwave energy Ps In an exactly analo-

gous way to , (3.5) and To;ss , (3.10), namely:

(7.21)

we obtain / /

(7.22) J~ Y '
o 0

In this expression, functions for 9, X and ? must be used
which refer to the shockwave. Suitable functions applicable

to the low pressure range are

(7.23) -- - ,

This yields

II

(T.24&) A4HFqA -____

or, for very low pressures, neglecting 3 and ) in comparison

with 2,0 and iP,':

(7.25) 7s 5'.' -

It is interesting to note that this result can be also obtained

from 00

(7.26)
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b7 assuming , and A/,tý/• are exponential functions,

which is a fairly good approximation for any shockwave when
used in (7.26).

Equation (7.25) is useful only if an inter-relationship

between

and
°ZAP

is found. For this purpose, we study the change of shockwave
energy with the distance . At the shock front mechanical

energy is dissipated due to the Irreversible processes associ-

ated with the discontinuous rise of pressure, velocity and
* density, as discussed in Chapter III.

Hence

(7.27) ,,

Comparison with (3.11), shows immediately that

* (7.28) - _J / ," - (/,4,,.

Combination of (7.26) and (3.7) yields, after rearrangement,

(7.29) / *

or for very small values of A

(7.30) ,,. . 2.,__

SA36



NAVORD Report 4182

Combination with (7.25) gives the following differential

equation for JjO :

(7.31) 013 + .5 ~± ±
ZA 0

The solution of (7.31) Is

f7 .3 2 ) as° . -

c is the integration constant.

Introduction of (7.32) Into (7.25) yields

(7.33) A

with

(7.34)

A rough approximation for • is

(7.35) 1 ;k.~3 911- 7

With (7.11), we obtain

(7.36) , --w '000

This expression resembles the asymptotic expression of Kirkwood

and Bethe (7.10). For the actual calculation, approximation

(7.35) is not necessary. It is almost as easy to use (7.33).
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7.5 The Intermediate Pressure Range. The relationships do-

rived in Chapter VII are suitable for large values of A # i.e.,
for the high pressure range. Numerical calculations have shown

that it is difficult to extend this method to such pressures,
where the above discussed "low-pressure" relations become valid.

It Is possible to bridge this gap by means of the "peak ap-

proximation". A suitable method is described in reference (h].

There, two ordinary differential equations are given which

relate the shockwave peak pressure, time factor and shape

factor with distance. The time factor Is given by

(T.37) [771j*

and the shape factor by

(738)

orexpressed in the magnitudes occurring in this report:

+ +

In these equations Ov. and co are reference values which cancel

in the process of the calculation. Qo may be chosen as an

arbitrary distance, e.g., the shock radius at the end of the

high pressure range, and c0 ab the sound velocity of the
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undisturbed water. Q' 0 7  and Qjoh' are derived and explained

in reference [hi. (7.37)and (7.39) as well as the peak

pressure calculated at the end of the high pressure range,

provide the initial conditions for the peak-approximation

method. The shape factor must now be estimated as a function

of distance. This is not difficult, since this magnitude is

close to unity for moderate and low pressures. A function

starting at the calculated values in the high pressurL region

and approaching unity is usually sufficiently accurate. Inte-

gration of the differential equations for peak pressure and

time factor given in reference (h] makes it possible to obtain

A for such low values of pressure that (7.33) becomes valid.

This determines the integration constant in (7.34). 13 can be

conveniently expressed in the terms of the functions P,, and

Pz. which occur in the peak-approximation theory:

(7.4) /r ),I P-. A), -I

This provides the equations for the calculation of the

sho,,Kwave parameters, beginning at the extremely high pressures

v.ccurring shortly after the explosion down to the low pressures

of a nearly acoustic wave.
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Cross- lot of
for i -Po *b.

-70---
A +1 -2 -1 0 +1 - scale

ln c

I * I

.-. - -- t.-,---7 "

Solving urve

a

in Iýo

Figure 1. Determination of (9 =4t

For each value of f, several values of Q are assumed,

suc& as P = + , 0, -1, -2, etc. For each of these values of

0, 2, is calculated using equation 1.3 and In Y, is plotted
versus In Y. The correct (9 is the slope of the solving

curve in ti-is plot. The solving curve is obtained by inter-
polation among the calculated data. Examples of this data for

two values of P, are shown at a and b in the above sketch.

As a first approximation, a curve is drawn from t~e known initial

value of 1, at (, =off through the regions of intersections A

and B. T1 'e approximate curve is then adjusted at each P, v

until the slope of the curve is equal to the interpolated value

of (3 . This interpolation is readily accomplished with the

aid of a crossplot such as the one slown. For example, the

inclination of the solving curve at the polut c must be equal

to read from the scale of the crossplot.
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LIST OF SYMBOLS

a, Qz Abbreviations defined by (7.T6) and (7.7).

AoA) .. Coefficients of the expansion of 'p

80 8,... Coefficients of the expansion of X

C Sound velocity

c. Sound velocity of the undisturbed medium

Cc, • .... Coefficients of the expansion of jP

e 2.71828....
£ Internal energy

Abbreviation defined by (4.8)

G Abbreviation defined by (4.13a)

6, Decay factor of shock front density (2.20)

/7 Dissipated enthalpy increment "

ANH Enthalpy increment

H Abbreviation defined by (4.9)

#/ Decay factor of shockwave peak pressure (2.18)

J Reduced internal energy (2.c%"

koWL Abbreviations defined by (4.13)
L Abbreviation defined by (4.9)

L, Decay factor of partial velocity behind shock
front (2.19)

v,/ v Abbreviations defined by (5.9)

$ Excess pressure

p, Shockwave peak pressure

A Absolute pressure in the undisturbed medium

9Abbreviation defined by (4.8)

Energy yield

QW, Dissipated energy

QB Bubble energy

Q, Shockwave energy
r Radius

5 Entropy

1
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i Time
7 Temperature
r7 Lowest temperature of the system

-f Particle velocity
A, Particle velocity right behind shook front
U r•ropagation velocity of shock front
v Specific volume -

', x - RD Y /00
- ? -

/3w4-i~ /4.4rp.-)/j

Adiabatic exponent as defined by (2.4)
True adiabatic exponent; see (2.5)
Adiabatic exponent right behind the shock front
Adiabatic exponent at the center of the
disturbance

SRankine -Hugoniot exponent
. 4, Roots of denominator in (4.11)

6 Coefficient of change of sound velocity with
pressure

7 Reduced energy
• •, Total reduced energy of the sphere of disturbance

9DM Reduced dissipated energy
Is Reduced shockwave energy
"14 e?-, -O-f)/A/P

Reduced radius

' - 3.14159....
'/ Density
,P, Density right behind shock front

Density right behind shook front at the initial
condition (Taylor Solution)

,O Density of the undisturbed medium

SPReduced particle velocity
X Reduced density

a
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Reduced pressure
"Reduced pressure at the center of the
disturbance
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